外热流环境中星间激光快速建链影响分析研究
作者:
作者单位:

上海卫星工程研究所 上海 201109

作者简介:

张萍 1998年生,硕士研究生。
成飞 1980年生,博士研究生,研究员。
关哲 1988年生,博士,高级工程师。
贺文正 2001年生,硕士研究生。
韩轶丹 1992年生,硕士,工程师。

中图分类号:

TN929.1;TN927+.2

基金项目:

科工局民用航天技术预先研究项目(D010105)


Analysis and Study on the Impact of Rapid Link Establishment of Interstellar Laser in External Heat Flux Environment
Author:
Affiliation:

Shanghai Institute of Satellite Engineering, Shanghai 201109, China

  • 摘要
  • | | | | |
  • 文章评论
    摘要:

    激光通信作为卫星间数据传输的重要手段之一,其快速稳定的建链能力直接影响着星座系统的性能。激光通信终端依赖高精度光学跟瞄系统以实现信号光束持续稳定指向目标卫星。然而,空间环境因素会干扰激光终端的指向精度,其影响程度可达毫弧度量级。卫星在轨运行中因热胀冷缩和应力变化产生的星体结构形变,导致激光终端指向精度相较卫星平台基准位置发生刚体位移。本文以星间激光通信链路快速稳定建链为应用背景,采用有限元分析方法对激光终端基准与卫星平台星敏基准因热致形变产生的指向误差进行研究。通过分析不同轨道高度卫星在轨受热变形产生的安装基准误差量,获取激光通信链路指向误差变化规律,为实现快速稳定建链提供分析基础,同时为整星响应单机布局及总体热控提供设计参考。

    Abstract:

    As one of the important means of data transmission between satellites, laser communication has a direct impact on the performance of the constellation system due to its fast and stable link establishment ability. The laser communication terminal relies on a high-precision optical tracking system to achieve continuous and stable pointing of the signal beam to the target satellite. However, space environmental factors can interfere with the pointing accuracy of laser terminals, and their influence can reach the level of milliarcsecond measurements. The deformation of the satellite structure caused by thermal expansion, cold contraction and stress changes during the satellite operation in orbit leads to the rigid displacement of the laser terminal pointing accuracy compared with the reference position of the satellite platform. In this paper, based on the application background of the rapid and stable chain construction of inter-satellite laser communication links, the finite element analysis method is used to study the pointing error caused by the thermally induced deformation of the laser terminal datum and the satellite platform star sensitive datum. By analyzing the installation reference error caused by the thermal deformation of satellites at different orbit altitudes, the variation law of laser communication link pointing error is obtained, which provides an analytical basis for the rapid and stable chain construction, and provides a design reference for the module layout and overall thermal control of the whole satellite.

    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张萍,成飞,关哲,贺文正,韩轶丹.外热流环境中星间激光快速建链影响分析研究[J].遥测遥控,2025,46(2):20-33.

复制
分享
文章指标
  • 点击次数:43
  • 下载次数: 26
  • HTML阅读次数: 5
  • 引用次数: 0
    参考文献
    [1] 张德鹏, 俞研, 王悦. 卫星激光网络应用技术研究[J]. 光通信研究, 2023(1): 32-41.ZHANG Depeng, YU Yan, WANG Yue. Research on application technology of satellite laser network[J]. Optical Communication Research, 2023(1): 32-41.
    [2] 王守达. 多点同时激光通信终端光学基台技术研究[D]. 长春: 长春理工大学, 2020. DOI:10.26977/d.cnki.gccgc. 2020.000042.
    [3] 侯睿, 赵尚弘, 李勇军, 等. 空间环境对卫星光通信系统的影响因素分析[J]. 光通信技术, 2008(4): 61-64.HOU Rui, ZHAO Shanghong, LI Yongjun, et al. Analysis of the influencing factors of space environment on satellite optical communication systems[J]. Optical Communication Technology, 2008(4): 61-64.
    [4] 万小平. 一种天线指向机构的指向精度分析[J]. 空间电子技术, 2016, 13(5): 71-75.WAN Xiaoping. Pointing accuracy analysis of an antenna pointing mechanism[J]. Space Electronics Technology, 2016, 13(5): 71-75.
    [5] 陆高原. 指向误差对空间激光通信系统性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [6] 丁少行. 星载激光通信端机指向误差分析及振动特性研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2020.
    [7] 程竟爽, 林益明, 何善宝, 等. 激光星间链路终端指向误差标定中的误差分离研究[J]. 宇航学报, 2019, 40(1): 85-93.CHENG Jingshuang, LIN Yiming, HE Shanbao, et al. Research on error separation in the calibration of laser inter-satellite link terminal pointing error[J]. Journal of Astronautics, 2019, 40(1): 85-93.
    [8] SONG, Z, WANG, P, KANG, C, et al. Satellite laser links pointing accuracy analysis methods. In: Yang, C., Xie[C]//China Satellite Navigation Conference Proceedings. Springer: Singapore, 2021: 502-510.
    [9] 王海强, 吕红剑, 李新刚, 等. 应用遥测数据的地球同步轨道卫星热变形分析[J]. 航天器工程, 2019, 28(5): 81-88.WANG Haiqiang, Hongjian LYU, LI Xingang, et al. Research on thermal deformation of GEO satellite by using telemetry measurement data[J]. Spacegraft Engineering, 2019, 28(5): 81-88.
    [10] WANG X, HAN J, CUI K, et al. On-orbit space optical communication demonstration with a 22s acquisition time[J]. Optics Letters, 2023, 48(22): 5980-5983.
    [11] 张海涛. 星载可展开天线热振动分析[D]. 西安: 西安电子科技大学, 2012.
    [12] KAHRAMAN Y E, AKBULUT A. Investigation of the effects of pointing errors on optical intersatellite links using real orbital data[C]//2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey. Berlin: Springer, 2021: 273-276.
    [13] 杨东武. 星载大型可展开索网天线结构设计与型面调整[D]. 西安: 西安电子科技大学, 2010.
    [14] 刘绍然, 李一帆, 张文睿, 等. 星载激光通信终端在轨机动对温度影响[J]. 宇航学报, 2018, 39(11): 1221-1227.LIU Shaoran, LI Yifan, ZHANG Wenrui, et al. Effect of on-orbit maneuvering of spaceborne laser communication terminal on temperature[J]. Journal of Astronautics, 2018, 39(11): 1221-1227.
    [15] 张赛. 空间光学相机折纸型薄膜防护罩设计及热变形分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [16] 赵亮, 张志刚, 孙瑶. 高精度光学系统光机热耦合分析方法与实现[J]. 系统仿真学报, 2023, 35(6): 1381-1394.ZHAO Liang, ZHANG Zhigang, SUN Yao. Method and implementation of optical-mechanical thermal coupling analysis of high-precision optical system[J]. Journal of System Simulation, 2023, 35(6): 1381-1394.
    [17] 杨何, 王晨, 沈星, 等. 面向天线板热变形的有限元模型修正方法[J]. 南京航空航天大学学报, 2023, 55(6): 1118-1125.YANG He, WANG Chen, SHEN Xing, et al. A finite element model updating method for thermal deformation of antenna plates[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2023, 55(6): 1118-1125.
    [18] 张正尧, 江世臣, 王萌, 等. 星载天线反射面型面热变形影响因素分析[J]. 航天器环境工程, 2021, 38(2): 130-137.ZHANG Z Y, JIANG S C, WANG M, et al. Analysis of influencing factors on thermal deformation of satellite onboard antenna reflector[J]. Spacecraft Environment Engineering, 2021, 38(2): 130-137
    [19] 张兴丽, 朱德鑫, 叶东. 星载双反射抛物面天线热变形分析[J]. 航天器环境工程, 2022, 39(6): 569-574.ZHANG X L, ZHU D X, YE D. Thermal deformation analysis on reflection surface of space-borne dual reflector parabolic antenna[J]. Spacecraft Environment Engineering, 2022, 39(6): 569-574.
    [20] 闵桂荣, 郭舜. 航天器热控制[M]. 北京: 科学出版社, 1985
    [21] 李奇, 周徐斌, 杜三虎, 等. 大型星载固面天线热变形试验及仿真分析验证[J]. 航天器环境工程, 2017, 34(1): 40-48LI Q, ZHOU X B, DU S H, et al. Simulation analysis and model validation of thermal distortion for large space-borne solid antenna[J]. Spacecraft Environment Engineering, 2017, 34(1): 40-48
    [22] 刘国青, 罗文波, 童叶龙, 等. 航天器在轨全周期热变形分析方法[J]. 航天器工程, 2016, 25(6): 40-47.LIU Guoqing, LUO Wenbo, TONG Yelong, et al. Thermal deformation analysis method of in orbit whole cycle for spacecraft[J]. Spacecraft Engineering, 2016, 25(6): 40-47.
    [23] 吕佳飞. 微小型卫星激光通信终端跟瞄机构的研究[D]. 长春: 长春理工大学, 2017.
    [24] 宋义伟. 潜望式卫星光通信终端45度镜空间温变特性及影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [25] 李晓峰, 汪波, 胡渝. 在轨运行热环境下的天线镜面热变形对空地激光通信链路的影响[J]. 宇航学报, 2005, 26(5): 581-585.LI Xiaofeng, WANG Bo, HU Yu. Effect of mirror thermal deformation of antenna on air-to-ground laser communication link in thermal environment of orbit operation[J]. Journal of Astronautics, 2005, 26(5): 581-585.
    [26] 谢小龙. 星间光通信中反射式接收天线热形变影响的分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
    [27] 印璞. 反射面天线结构热形变及其辐射特性影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [28] 王朋朋, 刘佳, 王峰, 等. 大口径高精度星载天线的热变形优化设计与仿真计算[J]. 机械工程学报, 2022, 58(9): 41-48.WANG Pengpeng, LIU Jia, WANG Feng, et al. Thermal distortion optimization design and simulation of a large high precision satellite antenna[J]. Journal of Mechanical Engineering, 2022, 58(9): 41-48.
历史
  • 收稿日期:2024-12-17
  • 最后修改日期:2025-02-10
  • 在线发布日期: 2025-03-19