一种基于边缘特征的无人机视觉定位方法
作者:
作者单位:

1.四川航天系统工程研究所成都610100;2.北京遥测技术研究所北京100076

作者简介:

刘春江 1993年生,硕士,工程师。
张鹏宇 1996年生,硕士,助理工程师。

通讯作者:

中图分类号:

V279;TP391

基金项目:

国家自然科学基金预算制项目“不确定环境无人飞行器集群自主安全飞行控制方法研究”(U2241214)


A Visual Localization Method for Unmanned Aerial Vehicles Based on Edge Features
Author:
Affiliation:

1.Sichuan Aerospace Systems Engineering Research Institute, Chengdu610100, China;2.Beijing Research Institute of Telemetry, Beijing100076, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机在无导航信号环境中低空动态飞行时,视觉同时定位与建图(Simultaneous Localization And Mapping, SLAM)定位方法在图像快速变化和过曝光时稳定性差的问题,本文提出一种基于边缘特征的无人机视觉定位方法,通过对传统特征提取算法的数据进行降维,生成边缘特征,利用卷积神经网络进行连续关键帧之间边缘特征匹配,得到边缘特征重投影误差函数,最终通过非线性优化完成位姿估计。实验结果表明:在数据集下,与最新的ORB-SLAM3(支持视觉、视觉加惯导、混合地图的SLAM系统)算法相比,新方法定位时间缩短31%,在低纹理场景中,定位精度提高15.04%。飞行实验结果表明无人机定位的准确性和稳定性得到了显著提高。

    Abstract:

    Aiming at the issue of poor stability of visual localization and mapping (SLAM) methods during dynamic low-altitude flight of unmanned aerial vehicles (UAVs) in the absence of navigation signals, this paper proposes a UAV visual localization method based on edge features, which generates the edge features by downsizing the traditional feature extraction algorithm and finally completes the position estimation by nonlinear optimization. A convolutional neural network is employed to match edge features between consecutive key frames, yielding an edge feature reprojection error function, and finally the position estimation is completed by nonlinear optimization. The experimental results demonstrate that compared to the state-of-the-art ORB-SLAM3 algorithm, the proposed method reduces localization time by 31% on the dataset and improves localization accuracy by 15.04% in low-texture scenes. Flight experiments further indicate a significant enhancement in the accuracy and stability of UAV localization.

    相似文献
    引证文献
引用本文

刘春江,张鹏宇.一种基于边缘特征的无人机视觉定位方法[J].遥测遥控,2024,45(6):93-98.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2024-01-22
  • 最后修改日期:2024-06-22
  • 录用日期:
  • 在线发布日期: 2024-12-05
  • 出版日期:
  • 优先出版日期: 2024-12-05