基于三维卷积残差网络的无人机高光谱岩性分类
作者:
作者单位:

中国石油大学(华东)海洋与空间信息学院 青岛 266033

作者简介:

盛 辉 1972年生,副教授,硕士生导师。
牟泓宇 1997年生,硕士研究生。
刘善伟 1982年生,教授,博士生导师。
崔建勇 1976年生,讲师。

通讯作者:

中图分类号:

TP79;TP183

基金项目:

中石油重大科技项目(ZD2019-183-006)


Unmanned Aerial Vehicle Hyperspectral Lithology Classification Using Three-dimensional Convolutional Residual Networks
Author:
Affiliation:

College of Oceanography and Space Informatics in China University of Petroleum(East China),Qingdao 266033,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    岩性识别和分类是地质学、资源勘查等不可或缺的环节,高光谱遥感的兴起为岩性识别提供新的思路。利用机器学习挖掘岩石高光谱图像中的信息从而准确识别岩性,这具有重要的应用价值。目前用机器学习的方法实现岩石的高光谱影像分类研究中,缺少对空间和光谱信息的充分利用,因此本文使用了一种加入注意力机制的三维卷积残差网络结构,能够有效提取岩石高光谱图像的空间、光谱特征以及空谱联合特征。本实验利用无人机搭载高光谱传感器采集了10种不同类型的岩石样本影像,应用该算法对岩石高光谱图像进行分类。实验结果表明:该算法与传统机器学习算法SVM、RF和深度学习算法ResNet、3D CNN和SSRN相比具有更高的精度。

    Abstract:

    Lithological identification and classification constitute indispensable facets of geology, resource exploration, and related disciplines. The emergence of hyperspectral remote sensing has ushered in novel perspectives for lithological identification. The utilization of machine learning to extract information from hyperspectral rock images, thereby enabling accurate lithological identification, holds paramount practical significance. Currently, the application of machine learning methods for the classification of hyperspectral rock images lacks a comprehensive exploitation of spatial and spectral information. Therefore, this paper introduces a three-dimensional convolutional residual network structure augmented with an attention mechanism, capable of effectively extrac-ting spatial, spectral, and joint spatial-spectral features from hyperspectral rock images. In this experiment, images of 10 different types of rock samples were collected using a drone equipped with a hyperspectral sensor. The algorithm proposed in this study was applied to classify hyperspectral rock images. Experimental results indicate that, in comparison to traditional machine learning algorithms such as SVM and RF, as well as deep learning algorithms like ResNet, 3DCNN, and SSRN, the proposed algorithm exhibits higher accuracy.

    相似文献
    引证文献
引用本文

盛辉,牟泓宇,刘善伟,崔建勇.基于三维卷积残差网络的无人机高光谱岩性分类[J].遥测遥控,2024,45(3):114-122.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2023-12-30
  • 最后修改日期:2024-01-22
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
  • 优先出版日期: 2024-05-29