PTNet:一种面向加密流量分类的半监督并行Transformer网络
作者:
作者单位:

北京遥测技术研究所 北京 100076

作者简介:

冯舒文 1992年生,硕士,工程师。
李育恒 1993年生,硕士,工程师。
白旭洋 1999年生,硕士,工程师。

通讯作者:

中图分类号:

TP393;TP18

基金项目:


PTNet: A Semi-supervised Parallel Transformer Network for Encrypted Traffic Classification
Author:
Affiliation:

Beijing Research Institute of Telemetry, Beijing 100076, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着网络加密协议的广泛使用,传统的网络流量分类技术面临很大的挑战。目前的方法具有以下局限性:一是模型高度依赖深度特征,这要求有标注训练数据集的规模足够大,否则模型难以在新的数据上进行泛化;二是模型仅专注于流量的一个模态特征,不同类别流量的同一模态的特征区分度可能不够明显。针对这些问题,本文提出了一种基于深度学习的加密流量分类模型Parallel Transformer Net(并行转换网络,PTNet)。该模型基于预训练-微调的半监督思想,充分利用网络中大量无标签流量数据进行预训练,然后在少量有标签数据的基础上进行微调。此外,该模型并行提取了载荷和包长序列两个模态的流量特征,进行多模态的特征融合,并在三种不同的流量分类任务与相应的数据集(Android、USTC-TFC和CSTNET-TLS1.3,均为公开的数据集)上都表现出很好的效果,分类准确率分别达到95%、98%和97%。

    Abstract:

    With the widespread use of network encryption protocols, traditional network traffic classification technology has been challenged. The current method has the following limitations: first, the model is highly dependent on the depth feature, which requires the labeled training data set to be large enough in scale, otherwise the model will have difficulty generalizing to new data; second, the model only focuses on one modal feature of traffic, and the feature differentiation of the same mode of traffic from different categories may not be obvious. To solve these problems, a deep learning-based encryption traffic classification model called Parallel Transformer Net (PTNet) is proposed in this paper. Based on the semi-supervised idea of pre-training and fine-tuning, the model makes full use of a large amount of unlabeled traffic data on the network for pre-training, and then fine-tunes on the basis of a small amount of labeled data. Additionally, the model extracts the flow characteristics of load and packet length sequences in parallel to carry out multi-mode feature fusion. Three different traffic classification tasks and their corresponding datasets (Android, USTC-TFC, and CSTNET-TLS1.3) show good results, with classification accuracies reaching 95%, 98%, and 97%, respectively.

    相似文献
    引证文献
引用本文

冯舒文,李育恒,白旭洋. PTNet:一种面向加密流量分类的半监督并行Transformer网络[J].遥测遥控,2024,45(3):43-51.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2023-11-30
  • 最后修改日期:2024-03-06
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
  • 优先出版日期: 2024-05-29