基于OARO-GRU网络的高频地波雷达电离层杂波短期预测
作者:
作者单位:

江苏科技大学 海洋学院 镇江 212003

作者简介:

乔铁柱 1998年生,硕士研究生。
尚 尚 1982年生,副教授,硕士生导师。
石依山 1999年生,硕士研究生。
刘 强 1999年生,硕士研究生。

通讯作者:

中图分类号:

TN957.51;TP183

基金项目:

国家自然科学基金项目(61801196);江苏省研究生科研与实践创新计划项目(SJCX23_2138)


Short-term Prediction of Ionospheric Clutter from High Frequency Surface Wave Radar Using OARO-GRU
Author:
Affiliation:

Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电离层杂波的精确预测对提升高频地波雷达的目标探测性能具有重要推动作用。为此,提出了一种基于改进人工兔子算法优化门控循环单元 (Opposite Artificial Rabbits Optimization optimized Gated Recurrent Unit, OARO-GRU)网络的电离层杂波短期预测模型。首先,依据高频地波雷达接收到的电离层杂波具有混沌特性这一先验知识,通过相空间重构技术构造GRU网络的输入和输出样本集;然后,融入反向学习和柯西变异两种改进策略用于改善标准ARO的寻优能力,并将其用于执行GRU网络的包含隐层节点个数、初始学习速率和最大迭代次数在内的三个超参数值的优选;最后,重新训练优化后的GRU网络,输入测试样本集进行测试,并依据给定的评价指标评估模型。实测结果表明:相较于其他7种对照模型,所提出的OARO-GRU网络预测模型在预测精度和可靠性上均具有明显的优越性,为有效改善高频地波雷达的目标探测性能提供了一种新的思路与方法。

    Abstract:

    Accurate prediction of ionospheric clutter is of great significance in improving the target detection performance of high-frequency surface wave radar. This paper proposes a short-term prediction model of ionospheric clutter using the Opposite Artificial Rabbits Optimization optimized Gated Recurrent Unit (OARO-GRU) network. Firstly, based on the a priori knowledge that ionospheric clutter received by high-frequency surface wave radar has chaotic characteristics, the input and output sample sets of the GRU network are constructed using the phase space reconstruction technique. Then, two improvement strategies, namely, the opposition-based learning and the Cauchy-based mutation, are incorporated to enhance the optimization capability of the original ARO, which is used to optimizthe GRU network with the values of three hyperparameters including the number of hidden layer nodes, the initial learning rate, and the maximum number of iterations. Finally, the optimized GRU network is retrained and fed into the test sample set for testing. The model is evaluated based on the given evaluation metrics. The experimental results show that compared with the other seven comparison forecast models, the proposed OARO-GRU network model has obvious superiority in prediction accuracy and reliability, and provides a new idea and method for effectively improving the target detection performance of high-frequency surface wave radar.

    相似文献
    引证文献
引用本文

乔铁柱,尚尚,石依山,刘强.基于OARO-GRU网络的高频地波雷达电离层杂波短期预测[J].遥测遥控,2024,45(1):126-132.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2023-11-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-23
  • 出版日期:
  • 优先出版日期: 2024-01-23