基于ZYNQ平台的嵌入式高性能驱动控制研究
作者:
作者单位:

北京遥测技术研究所 北京 100076

作者简介:

崔慧敏 1990年生,博士,高级工程师,主要研究方向为高精度光学伺服控制和无人系统。
马纪军 1986年生,硕士,高级工程师,主要研究方向为伺服控制系统设计。
王宇宁 1975年生,硕士,研究员,主要研究方向为伺服控制系统设计。

中图分类号:

TN820.3;TM301.2

基金项目:

国家自然科学基金资助项目(61903044)


Research on embedded high-performance drive control based on ZYNQ platform
Author:
Affiliation:

Beijing Research Institute of Telemetry, Beijing 100076, China

  • 摘要
  • | | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统的光电平台驱动控制方案闭环周期长和体积大的问题,提出了一种基于ZYNQ平台的驱动控制方法。通过采用模块化设计思想,充分发挥ZYNQ中PL部分的并行处理优势,建立对应CLARK变化、PARK变换、交直轴电流PI校正、反PARK变换和SVPWM模块的IP核,最终输出PWM信号控制驱动桥六个桥臂的开关状态。系统的PWM周期可达18 kHz,电流环的闭环周期可控制在50 μs以内,极大地缩减了系统的闭环时间。实验结果表明,电交轴电流可以快速跟随方波和正弦波指令信号,且对应电机的三相电流平滑无畸变,纹波较小。不同频率的正弦输入信号证明了系统的闭环带宽可高于318 Hz,验证了方法的有效性,对于实现小型化高精度的伺服驱动控制具有重要参考价值。

    Abstract:

    Aiming at the problems of long closed loop period and large volume in the traditional drive control scheme of photoelectric platform, this paper proposes a drive control method based on ZYNQ platform. By adopting the modular design idea and fully exerting the parallel processing advantage of the PL part in ZYNQ, the IP cores corresponding to the CLARK transform, PARK transform, PI control of quadrature axis and direct axis, inverse PARK transform and SVPWM module respectively are established. PWM signals are finally output to control the on-off state of the six drive arms. The PWM period of the system can reach 18 kHz, and the closed-loop period of the current loop can be limited within 50 μs, which greatly reduces the closed-loop time. The experimental results show that the response current of the quadrature axis can quickly follow the square wave and sine wave command signals, the three-phase current of the motor is smooth without distortion, and the ripple is small. The sinusoidal inputs with different frequencies are given to verify that the closed-loop broadband is higher than 318 Hz, which validates the effectiveness of the proposed drive control method in the paper. It has important reference value for realizing miniaturization and high-performance drive control.

    相似文献
    引证文献
引用本文

崔慧敏,马纪军,王宇宁.基于ZYNQ平台的嵌入式高性能驱动控制研究[J].遥测遥控,2023,44(2):35-41.

复制
分享
文章指标
  • 点击次数:117
  • 下载次数: 236
  • HTML阅读次数: 21
  • 引用次数: 0
    参考文献
    [1] 王文杰, 徐伟, 朴永杰, 等. 卫星星间激光通信粗跟踪转台控制系统[J]. 光学精密工程, 2021, 29(12): 2797-2805.WANG Wenjie, XU Wei, PIAO Yongjie, et al. Control system for coarse tracking turntable of laser communication between satellites[J]. Optics and Precision Engineering, 2021, 29(12): 2797-2805.
    [2] 李荣, 许晶波, 孙贤备, 等. 机器人关节用双定子永磁同步电机设计[J]. 微特电机, 2021, 49(11): 14-18.LI Rong, XU Jingbo, SUN Xianbei, et al. Design of double stator permanent magnet synchronous motor for robot joint[J]. Small&Special Electrical Machines, 2021, 49(11): 14-18.
    [3] 方振丰. 基于FPGA的航天扫描天线转台高精度驱动控制系统研究[D]. 南京: 南京航空航天大学, 2020.FANG Zhenfeng. Research on high-precision drive control system of aerospace scanning antenna turntable based on FPGA[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [4] 刘川, 唐涛, 王娜, 等. 基于DSP-FPGA永磁同步电机MTPA弱磁控制研究[J]. 电力电子技术, 2021, 55(4): 16-19, 25.LIU Chuan, TANG Tao, WANG Na, et al. Research on MTPA field weakening control of permanent magnet synchronous motor based on DSP-FPGA[J]. Power Electronics, 2021, 55(4): 16-19, 25.
    [5] 崔熠. 基于FPGA+DSP的三片式液晶光阀投影仪驱动控制系统研究[D]. 长春: 长春理工大学, 2022.CUI Yi. Research on drive control system of three-chip liquid crystal light value projector based on FPGA+DSP[D]. Changchun: Changchun University of Science and Technology, 2022.
    [6] 支萌辉, 尹泉, 吕松垒, 等. 基于ARM+FPGA的数字交流伺服驱动器设计[J]. 电气传动, 2020, 50(9): 35-41.ZHI Menghui,YIN Quan,Songlei LÜ, et al. Design of digital AC servo driver based on ARM and FPGA[J]. Electric Drive, 2020, 50(9): 35-41.
    [7] 李俊颖. 基于ZYNQ的永磁同步电机伺服驱动系统设计[D]. 广州: 广东工业大学, 2021.LI Junying. Design of permanent magnet synchronous motor servo system based on ZYNQ[J].Guangzhou: Guangdong University of Technology, 2021.
    [8] 刘宏宇. 永磁同步电机直接转矩控制的MTPA控制系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2017.LIU Hongyu. Research on MTPA control system of direct torque control of permanent magnet synchronous mo-tor[D]. Harbin: Harbin University of Science and Technology, 2017.
    [9] 曹萱, 关文卿, 罗蕊. 基于SVPWM算法及ADRC算法的无刷电机转矩脉动抑制控制系统研究[J]. 测控技术, 2021, 40(1): 150-156.CAO Xuan, GUAN Wenqin, LUO Rui. Brushless motor torque ripple suppression control system based on SVPWM and ADRC algorithm[J]. Measurement & Control Technology, 2021, 40(1): 150-156.
    [10] 许军, 董江波, 方丹, 等. 电压空间矢量脉宽调制SVPWM数字化算法及实现[J].微电机, 2021, 54(4): 89-93.XU Jun, DONG Jiangbo, FANG Dan, et al. Digital algorithm and realization of voltage space vector pulse width modulation SVPWM[J]. Micromotors, 2021, 54(4): 89-93.
    [11] 王晓鹏. 基于Zynq的红外小目标检测系统设计与实现[D]. 西安: 西安电子科技大学, 2019.WANG Xiaopeng. A design and implementation of infrared small target detection system based on Zynq[D]. Xi'an: Xidian University, 2019.
历史
  • 收稿日期:2022-11-29
  • 最后修改日期:2022-12-29
  • 在线发布日期: 2023-03-29