基于UAV的空地协同任务卸载策略研究
作者:
作者单位:

江苏科技大学海洋学院 镇江 212003

作者简介:

杨紫薇 1997年生,硕士研究生,主要研究方向为移动边缘计算。
解志斌 1981年生,教授,主要研究方向为通信信号处理和无线传感器网络。
陈 磊 1997年生,硕士研究生,主要研究方向为无线传感器网络。
袁伟康 1997年生,硕士研究生,主要研究方向为无线通信系统理论。

通讯作者:

解志斌(xiezhibin@just.education.cn)

中图分类号:

TP393;V279

基金项目:

国家自然科学基金项目(61871203);江苏省未来网络科研基金项目(FNSRFP-2021-YB-51)


Research of air-to-ground cooperative task offloading strategy based on UAV-assisted
Author:
Affiliation:

Jiangsu University of Science and Technology, Ocean College, Zhenjiang 212003, China

  • 摘要
  • | | | | |
  • 文章评论
    摘要:

    随着各行业对大批量信息处理需求的增加,移动边缘计算(Mobile Edge Computing, MEC)技术应运而生。而在陆地障碍较多、MEC服务器搭载不便的情况下,研究了一种无人机(Unmanned Aerial Vehicle, UAV)中继辅助用户卸载任务到基站的场景。针对该场景,提出了一种基于博弈论的最优任务卸载方法,通过联合优化任务卸载比例和卸载策略使得系统时延最小化。由于这两个变量之间相互耦合,因此将原优化问题转化为两个子问题求解。首先,在确定策略的情况下,证明了系统时延最小值存在的条件,得到了用户的最优卸载比例闭合解。然后,将原优化问题转化为任务分配问题,并建立博弈论模型。在证明了该模型存在纳什均衡(Nash Equilibrium,NE)的前提下,经过多次迭代,求解得到基于时延最小的用户任务卸载策略集。仿真结果表明:上述方法有效降低了全局计算时延,在时效性上优于其他一些常见的卸载方法。

    Abstract:

    Mobile edge computing (MEC) technology has emerged, as processing a tremendous amount of data information has gradually become an urgent need in various industries. In the case of many land obstacles and inconvenient installation of MEC servers, a scenario where unmanned aerial vehicles (UAVs) relay assist users to offload tasks to the base station is proposed. Aiming at this scenario, an optimal task offloading method based on game theory is presented. In order to minimize system delay, the task-offloading ratio and task-offloading strategy are jointly optimized. Since these two variables are coupled with each other, the original optimization problem is transformed into two sub-problems for solving. First, the conditions for the existence of the minimum system latency are proved under the determined strategy. Simultaneously, the closed-form expression of the optimal offloading ratio is given. Then, the optimization problem is transformed into a task assignment problem and a game theory model is developed. By proving the existence of Nash Equilibrium (NE) in this model, the set of user task offloading policies based on the minimum delay is given after several iterations. The simulation demonstrates that the global computation time delay is effectively reduced by the above method, which is better than some other common offloading methods in terms of timeliness.

    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨紫薇,解志斌,陈磊,袁伟康.基于UAV的空地协同任务卸载策略研究[J].遥测遥控,2023,44(3):10-15.

复制
分享
文章指标
  • 点击次数:222
  • 下载次数: 322
  • HTML阅读次数: 17
  • 引用次数: 0
    参考文献
    [1] 吴静, 张凤, 孙翊, 等. 抗疫情助推我国数字化转型:机遇与挑战[J]. 中国科学院院刊, 2020, 35(3): 306-311.WU Jing, ZHANG Feng, SUN Yi, et al. Fighting the epidemic helps China digital transformation: Opportunities and challenges[J]. China Academic Journal Electronic Pu-blishing House, 2020, 35(3): 306-311.
    [2] 崔滔. 边缘计算助力行业数字化转型[J]. 计算机与网络, 2021, 47(8): 35-37.CUI Tao. Edge computing facilitates the digital transformation of the industry[J]. Computer & Network, 2021, 47(8): 35-37.
    [3] 方加娟, 李凯. 基于边缘云和移动辅助设备的计算卸载优化方案[J]. 计算机应用与软件, 2020, 37(12): 6-12.FANG Jiajuan, LI Kai. Optimal scheme of computation offloading based on edge cloud and mobile auxiliary eq-uipment[J]. Computer Applications and Software, 2020, 37(12): 6-12.
    [4] 查易艺, 袁烨, 李金湖, 等. 一种移动边缘云计算任务卸载算法[J]. 计算机应用与软件, 2020, 37(6): 135-141.ZHA Yiyi, YUAN Ye, LI Jinhu, et al. A task offloading algorithm in mobile edge cloud computing[J]. Computer Applications and Software, 2020, 37(6): 135-141.
    [5] 张捷, 杨晨, 刘学. 一种超视距组网无人机载通信系统设计[J]. 遥测遥控, 2022, 43(5): 1-10.ZHANG Jie, YANG Chen, LIU Xue. A design of UAV-borne communication system of non-line-of-sight networking[J]. Journal of Telemetry, Tracking and Command, 2022, 43(5): 1-10.
    [6] ZHU S, LIN G, CHEN J, et al. Cooperative computation offloading for UAVs: A joint radio and computing resource allocation approach[C]//2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA: IEEE, 2018: 74-79.
    [7] HUA M, HUANG Y, SUN Y, et al. Energy optimization for cellular-connected UAV mobile edge computing systems[C] //2018 IEEE International Conference on Communication Systems (ICCS), Chengdu, China: IEEE, 2018: 1-6.
    [8] REN Y, XIE Z, DING Z, et al. Computation offloading game in multiple UAV-enabled mobile edge computing networks[J]. IET Communications, 2021, 15(10): 1392-1401.
    [9] GUO H, LIU J. UAV-enhanced intelligent offloading for internet of things at the edge[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2737-2746.
    [10] ALESNWI M, YAN K T, PANDEY S R, et al. UAV-assisted multi-access edge computing system: an energy-efficient resource management framework[C]//2020 International Conference on Information Networking (ICOIN), Barcelona, Spain: IEEE, 2020: 214-219.
    [11] 姚维, 黄俊. 移动边缘计算中的无人机群协同任务卸载策略研究[J]. 重庆邮电大学学报(自然科学版), 2022, 34(3): 507-514.YAO Wei, HUANG Jun. Research on UAVs collaborative task offloading strategy based on mobile edge computing[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2022, 34(3): 507-514.
    [12] YU Z, GONG Y, GONG S, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147-3159.
    [13] XU J, ZENG Y, ZHANG R. UAV-enabled wireless power transfer: trajectory design and energy optimization[J]. IEEE Transactions on Wireless Communicat-ions, 2018, 17(8): 5092-5106.
    [14] MOURA J, HUTCHISON D. Game theory for multi-access edge computing: Survey, use cases, and future tr-ends[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 260-288.
    [15] NASH J F. Equilibrium points in N-Person games[J]. Proceedings of the National Academy of Sciences, 1950, 36(1): 48-49.
    [16] YANG L, YAO H, ZHANG X, et al. Multi-UAV deployment for MEC enhanced IoT networks[C]//2020 CIC International Conference on Communications in China (ICCC), Chongqing, China: IEEE, 2020: 436-441.
历史
  • 收稿日期:2022-10-12
  • 最后修改日期:2022-11-18
  • 在线发布日期: 2023-05-15