基于分层人工鱼群的相干极化-DOA联合估计
作者:
作者单位:

哈尔滨工业大学(威海)信息科学与工程学院 威海 264209

作者简介:

曹丙霞 1980年生,博士,副教授,主要研究方向为阵列信号处理和雷达电子对抗。
刘 威 1999年生,硕士,主要研究方向为智能寻优算法。
李 享 1994年生,博士研究生,主要研究方向为阵列信号处理。
闫锋刚 1982年生,博士,教授,主要研究方向为阵列信号处理和雷达电子对抗。
金 铭 1968年生,博士,教授,主要研究方向为雷达信号处理和电子对抗。

通讯作者:

闫锋刚(yfglion@163.com)

中图分类号:

TN957.51;TN959.2

基金项目:

国家自然科学基金(61971158, 61871149);山东省自然科学基金(ZR2020YQ46)


Polarization-DOA joint estimation of coherent signal sources based on hierarchical artificial fish swarm algorithm
Author:
Affiliation:

School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China

  • 摘要
  • | |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    智能优化算法是解决多维非线性优化问题、提高计算效率的有力工具。本文针对相干辐射源极化-空间角联合估计中计算量巨大的工程难题,以广义子空间拟合约束公式为代价函数,提出一种分层人工鱼群算法。该算法基于分层协同策略将鱼群分为底层和顶层,底层以人工鱼群算法进行全局搜索以保证种群多样性,顶层以粒子群算法进行局部搜索以加快收敛速度。仿真结果证明:分层人工鱼群算法能大幅降低广义子空间拟合的计算量,尤其是在较多目标的情况下。算法可有效提高计算效率,同时可提供优于传统人工鱼群算法的估计精度。

    Abstract:

    Intelligent optimization algorithms are powerful tools to solve multi-dimensional nonlinear optimization problems and improve computational efficiency. A hierarchical artificial fish swarm algorithm is proposed in this paper, taking generalized subspace fitting constraint formula as the cost function. The proposed algorithm aims at the difficult engineering problem of huge computation in coherent radiation sources polarization-spatial angle joint estimation. The algorithm divides the fish swarm into a bottom layer and a top layer based on a hierarchical collaborative strategy. The bottom layer uses artificial fish swarms for global search to ensure population diversity. Meanwhile, the top layer adopts particle swarms for local search to speed up the convergence rate. The simulation results show that the hierarchical artificial fish swarm algorithm can greatly reduce the calculation amount of generalized subspace fitting, especially in the case of more targets. The algorithm can effectively improve computational efficiency and also provide better estimation accuracy than traditional artificial fish swarm algorithm.

    相似文献
    引证文献
引用本文

曹丙霞,刘威,李享,闫锋刚,金铭.基于分层人工鱼群的相干极化-DOA联合估计[J].遥测遥控,2023,44(1):88-98.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
    [1] 徐友根, 刘志文, 龚晓峰. 极化敏感阵列信号处理[M]. 北京: 北京理工大学出版社, 2013.
    [2] FRIEDLANDER B, WEISS A J. Direction finding using spatial smoothing with interpolated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 574-587.
    [3] LI J, COMPTON R T. Angle and polarization estimation in a coherent signal environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 706-716.
    [4] XU Y, LIU Z. Polarimetric angular smoothing algorithm for an electromagnetic vector-sensor array[J]. Iet Radar Sonar & Navigation, 2007, 1(3): 30-240.
    [5] NEHORAI A, PALDI E. Vector-sensor array processing for electromagnetic source localization[J]. IEEE Transactions on Signal Processing, 1994, 42(2): 76-398.
    [6] RAHAMIM D, TABRIKIAN J, SHAVIT R. Source localization using vector sensor array in a multipath environment[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3096-3103.
    [7] VIBERG M, OTTERSTEN B. Sensor array processing based on subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1110-1121.
    [8] CHEN H H, HU J L, TIAN H, et al. A low-complexity GA-WSF algorithm for narrow-band DOA estimation[J]. International Journal of Antennas and Propagation, 2018: 1-6.
    [9] 徐友根, 刘志文. 广义信号子空间拟合角度-极化联合估计[J]. 北京理工大学学报, 2010, 30(7): 835-839.XU Yougen, LIU Zhiwen. Joint angle-polarization estimation via generalized signal-subspace fitting[J]. Beijing Institute of Technology Press, 2010, 30(7): 835-839.
    [10] ZISKIND I, WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Trans. Acoust. Speech & Signal Processing, 1988, 36(10): 1553-1560.
    [11] SWINDLEHURST A. An alternative algorithm for maximum likelihood DOA estimation and detection[J]. Iee Proceedings Radar Sonar & Navigation, 1994, 141(6): 293-299.
    [12] COSTA M . DoA and polarization estimation for arbitrary array configurations[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2330-2343.
    [13] 胡显智, 王宁, 戴旭初. 基于流形分离技术的DOA和极化参数联合估计方法[J]. 测试技术学报, 2018, 32(5): 435-442.HU Xianzhi, WANG Ning, DAI Xuchu. Joint estimation algorithm of DOA and polarization based on the manifold separation technique[J]. Journal of Test and Measurement Technology, 2018, 32(5): 435-442.
    [14] ZHOU J, XIANG M, WANG H, et al. A system method for DOA estimation by optimizing the layout of array antenna on complex platform[C]//2020 3rd International Conference on Unmanned Systems, 2020.
    [15] 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22(11): 32-38.LI Xiaolei, SHAO Zhijiang, Qian Jixin. An optimizing method based on autonomous animats: Fish-swarm algorithm[J]. Systems Engineering-Theory & Practice, 2002, 22(11): 32-38.
    [16] XUE J, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal, 2020, 8(1): 22-34.
    [17] OUYANG C, LIU Y, ZHU D. An adaptive chaotic sparrow search optimization algorithm[C]//2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, 2021.
    [18] YANG Liu, LI Zhen, WANG Dongang. Software defects prediction based on hybrid particle swarm optimization and sparrow search algorithm[J]. IEEE Access, 2021, 9: 60865-60879.
历史
  • 收稿日期:2022-07-31
  • 最后修改日期:2022-09-13
  • 在线发布日期: 2023-01-14