Abstract:The tethered parachute can stay in the air for a long time with the load of wind, which has the advantages of strong wind resistance, high load weight, low power consumption and long reconnaissance range compared with the tethered UAVs. Due to the rigid-flexible coupling characteristics of the tethered parachute, the control system is difficult to design, and there is a lack of effective control models and immature technology, which restricts the application of this new hysteretic flight platform. In this paper, the tethered parachute control method based on the rigid-flexible coupling dynamics modeling, the unsteady aerodynamic modeling of tethered parachute, the rigid-flexible coupling state-space modeling of tethered parachute and the tethered parachute rigid-flexible hybrid control technology implementation are introduced, and the effectiveness of the method is verified.