基于改进ALO-RBF的高频地波雷达海杂波预测模型
作者:
作者单位:

江苏科技大学海洋学院 镇江 212100

作者简介:

张先芝 1998年生,硕士研究生,主要研究方向为弱目标检测与海杂波抑制。
尚 尚 1982年生,副教授,硕士生导师,主要研究方向为雷达信号处理与杂波抑制方法研究。
戴圆强 1997年生,硕士研究生,主要研究方向为弱目标检测与电离层杂波抑制。
杨 童 1997年生,硕士,主要研究方向为高频地波雷达信号处理和目标检测。
刘 明 1997年生,硕士研究生,主要研究方向为信号预测。

通讯作者:

尚尚(shangshang@just.edu.cn)

中图分类号:

TN957.54

基金项目:

国家自然科学基金项目(61801196);国防基础科研计划稳定支持专题项目(JCKYS2020604SSJS010);江苏省研究生科研与实践创新计划资助项目(SJCX22_1889)


Sea clutter prediction model of high frequency surface wave radar based on improved ALO-RBF neural network
Author:
Affiliation:

Ocean College, Jiangsu University of Science and Technology, Zhenjiang, 212100, China

  • 摘要
  • | |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    高频地波雷达是海上动目标检测的重要手段,其中海杂波是影响海面目标检测性能的主要因素。为了提高海杂波的预测精度进而有效抑制海杂波,本文提出了一种基于改进蚁狮算法(Ant Lion Optimizer,ALO)优化RBF神经网络的海杂波预测模型(MGPALO-RBF,Multiple elites dynamic guidance Ant Lion Optimizer based on Gaussian difference variation-based learning with Perturbation factor-radial basis function)。由于标准蚁狮算法具有易陷入局部最优且收敛速度慢的缺点,本文在蚂蚁进行随机行走的过程中加入扰动因子以增加种群的活跃性和多样性,并提出多个精英动态引导机制,强化算法前期的探索能力和后期的开发能力,同时对种群中较差蚁狮进行高斯差分变异以提高算法的收敛速度。仿真结果表明:改进的蚁狮算法在对比算法中具有更高的收敛精度和收敛速度,MGPALO-RBF模型具有更好的海杂波预测性能。

    Abstract:

    High-frequency ground wave radar is an important means of detecting moving targets on the sea, among which sea clutter is the primary factor that influences the function of sea surface target detection. For the sake of enhancing the prediction precision of sea clutter and validly restrain the sea clutter, this paper proposes a sea clutter prediction model (MGPALO-RBF) based on the improved ant lion algorithm to optimize the RBF neural network. In order to ameliorate the weak point of the ant lion algorithm that it sink easily into the local optimum and the convergence velocity is slow, a disturbance factor is added to increase the activity and variety of the population during the process of stochastic walk of the ants; multiple elite dynamic guidance mechanisms are put forward to intensify the searching capability of the algorithm in the prophase and the exploit ability in the later stage; Gaussian difference mutation is put forward on the poor ant lion in the population to enhance the convergence velocity of the algorithm. The simulation results make clear that the mended ant lion algorithm has higher convergence precision and constriction speed in the contrast algorithm, and the optimized model has a better effect in sea clutter prediction.

    相似文献
    引证文献
引用本文

张先芝,尚尚,戴圆强,杨童,刘明.基于改进ALO-RBF的高频地波雷达海杂波预测模型[J].遥测遥控,2023,44(1):111-119.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
    [1] 王瑞富, 孔祥超, 纪永刚, 等. 基于GIS的高频地波雷达回波信号的表达处理与显示[J]. 海洋科学, 2015, 39(7):86-92.WANG Furui, KONG Xiangchao, JI Yonggang, et al. Expression and display of echo signal of HF surface wave ra-dar based on GIS[J]. Marine Sciences, 2015, 39(7): 86-92.
    [2] 何康宁, 尚尚. 高频地波雷达海杂波抑制方法研究综述[J]. 遥测遥控, 2019, 40(4): 10-16.HE Kangning, SHANG Shang. Review on sea clutter suppression methods of high frequency surface wave radar[J]. Journal of Telemetry,Tracking and Command, 2019, 40(4): 10-16.
    [3] SIMON R A, KUMAR P B V. A nonlinear sea clutter analysis using chaotic system[C]//2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). IEEE, 2013: 1-5.
    [4] 何康宁. 基于RBF神经网络的高频地波雷达海杂波抑制方法研究[D]. 江苏科技大学, 2021.
    [5] 雒贤华, 王智勇, 王大语, 等. 基于ACO-RBF神经网络的接触电阻预测[J]. 传感器与微系统, 2021, 40(11): 139-142.LUO Xianhua, WANG Zhiyong, WANG Dayu, et al. Prediction of contact resistance based on ACO-RBF neural network[J]. Transducer and Microsystem Technologies, 2021, 40(11): 139-142.
    [6] 张小青, 吴继侠, 唐榕蔚. 基于灰狼优化算法的RBF神经网络[J]. 信息技术与信息化, 2021(9): 26-28.
    [7] MIRJALILI S. The ant lion optimizer[J]. Advances in engineering software, 2015, 83: 80-98.
    [8] PETROVIĆ M, PETRONIJEVIĆ J, MITIĆ M, et al. The ant lion optimization algorithm for integrated process planning and scheduling[C]//Applied Mechanics and Mat-erials. Trans Tech Publications Ltd, 2016, 834: 187-192.
    [9] AZIZI M, GHASEMI S A M, EJLALI R G, et al. Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm[J]. Artificial Intelligence Review, 2020, 53(3): 1553-1584.
    [10] 王茜, 何庆, 林杰, 等. 精英反向学习带扰动因子的混沌蚁狮算法[J]. 智能计算机与应用, 2020, 10(8): 51-57.WANG Qian, HE Qing, LIN Jie, et al. Chaos ant lion optimizer based on elite opposition-based learning with perturbation factor[J]. Intelligent Computer and Applications, 2020, 10(8): 51-57.
    [11] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69(7): 46-61.
    [12] 刘景森, 霍宇, 李煜. 优选策略的自适应蚁狮优化算法[J]. 模式识别与人工智能, 2020, 33(2): 121-132.LIU Jingsen, HUO Yu, LI Yu. Preferred strategy based self-adaptive ant lion optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(2): 121-132.
    [13] 张晓庆, 高尚, 范霁月. 基于混合变异的人工蜂群算法[J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 93-99.ZHANG Xiaoqing, GAO Shang, FAN Jiyue. Artificial bee colony algorithm based on hybrid mutation[J]. Journal of Jiangsu University of Science and Technology ( Natural Science Edition), 2018, 32(1): 93-99.
    [14] SHI Y, EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence Cat. No. 98TH-8360. IEEE, 1998: 69-73.
    [15] DHIMAN G, KUMAR V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196.
    [16] 潘赢, 贾国庆, 郜伟伟. SOA优化BP神经网络的水体氨氮预测模型[J]. 佳木斯大学学报(自然科学版), 2020, 38(2): 40-44.PAN Ying, JIANG Guoqing, GAO Weiwei. Predictiong model of ammonia nitrogen in water based on SOA optimized BP neural network[J]. Journal of Jiamusi University(Natural Science Editon), 2020, 38(2): 40-44.
    [17] 许乐, 莫愿斌, 卢彦越. 基于改进海鸥优化算法的PID控制器参数优化[J]. 机床与液压, 2021, 49(16): 17-23.XU Le, MO Yuanbin, LU Yanyue. Parameter optimization of PID controller based on improved seagull optimization algorithm[J]. Machine Tool & Hydraulics, 2021, 49(16): 17-23.
    [18] HAYKIN S. Radar clutter attractor: Implications for physics, signal processing and control[J]. IEE Proceedings Radar Sonar & Navigation, 1999, 146(4): 177-188.
    [19] CHEN S, CHNG E S, ALKADHIMI K. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Trans Neural Netw, 1991, 64(5): 829-837.
    [20] KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127(1-2): 48-60.
历史
  • 收稿日期:2022-04-11
  • 最后修改日期:2022-05-21
  • 在线发布日期: 2023-01-14