基于改进PSO-WNN的高频地波雷达 电离层杂波抑制方法
作者:
作者单位:

江苏科技大学海洋学院

作者简介:

通讯作者:

中图分类号:

TN957.54

基金项目:

国家自然科学基金项目(61801196);国防基础科研计划稳定支持专题项目(JCKYS2020604SSJS010);江苏省研究生科研与实践创新计划资助项目(KYCX21_3478、KYCX21_3468)


Ionospheric clutter suppression method for HF ground wave radar based on improved PSO-WNN
Author:
Affiliation:

Ocean College, Jiangsu University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高频地波雷达的海上目标探测能力与电离层杂波的抑制效果息息相关,而电离层杂波的复杂性与变化多样性又为抑制带来了难题。为实现电离层杂波的抑制,分析了电离层杂波的混沌特性,在此基础上提出一种基于改进粒子群算法优化小波神经网络的抑制方法,解决了粒子群算法易早熟和易陷入局部最优的缺点;提出一种自适应概率变异的策略,丰富了种群多样性,使得整个迭代过程中粒子群能够跳出当前最优,寻得全局最优。实测实验表明,基于改进粒子群算法优化的小波神经网络(PSO-WNN)能够基本预测电离层杂波的数值,进行电离层杂波的抑制,有效改善了信噪比,对电离层杂波的抑制研究具有重要意义。

    Abstract:

    The sea target detection ability of HF ground wave radar is closely related to the suppression effect of ionospheric clutter, and the complexity and diversity of ionospheric clutter bring difficulties to the suppression. In order to suppress ionospheric clutter, the chaotic characteristics of ionospheric clutter are analyzed. On this basis, a suppression method based on improved particle swarm optimization to optimize wavelet neural network is proposed, which solves the shortcomings of particle swarm optimization that it is easy to premature and fall into local optimization. An adaptive probability mutation strategy is proposed to enrich the population diversity, the particle swarm optimization can jump out of the current optimal and find the global optimal in the whole iterative process. The experimental results show that the wavelet neural network optimized based on the improved particle swarm optimization algorithm can basically predict the value of ionospheric clutter. After the suppression of ionospheric clutter, the signal-to-noise ratio is effectively improved, and the research on the suppression of ionospheric clutter is of great significance.

    相似文献
    引证文献
引用本文

戴圆强,尚 尚,杨 童,张先芝.基于改进PSO-WNN的高频地波雷达 电离层杂波抑制方法[J].遥测遥控,2022,43(3):86-93.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2021-12-28
  • 最后修改日期:2022-05-16
  • 录用日期:2022-01-17
  • 在线发布日期: 2022-05-31
  • 出版日期:
  • 优先出版日期: 2022-05-31