机器视觉在军事领域的应用现状及发展趋势
作者:
作者单位:

中国人民解放军93160部队

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Application status and development trend of machine vision in military field
Author:
Affiliation:

Unit 93160 of the People''s Liberation Army

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器视觉技术凭借其非接触测量、实时性好、可持续工作等优点,在军事领域中有着广阔的应用前景。在对机器视觉光学照明系统、成像系统、视觉信息处理系统等关键技术进行概述的基础上,详细分析了机器视觉技术在军事领域进行典型目标物识别、人员识别、装备缺陷检测等典型场景以及典型军事装备上的应用现状。在此基础上,指出了机器视觉在军事领域的应用,仍然存在视觉传感器硬件系统难以适应极端环境、复杂的军事目标适应性不足、目标识别的实时性难以保证、多传感器融合获取军事目标信息能力缺乏等问题。同时,对机器视觉技术在军事领域应用的未来发展趋势进行了展望,研究分析结果可为机器视觉在军事领域的进一步实用化提供参考。

    Abstract:

    With the advantages of non-contact measurement, good real-time and sustainable work, machine vision technology has broad application prospects in the military field. Based on the overview of key technologies, such as machine vision optical lighting system, imaging system and visual information processing system, the application status of machine vision technology in typical scenes, such as typical target recognition, personnel identification, equipment defect detection, and typical military equipment in military field were analyzed in this paper. On this basis, the problems that still exist in the application of machine vision in the military field, such as the visual sensor hardware system is difficult to adapt to the extreme environment, the adaptability of complex military targets is insufficient, the real-time performance of target recognition is difficult to ensure, and the ability of multi-sensor fusion to obtain military target information is insufficient, all those were pointed out in detail. Then the future development trend of machine vision technology in military field was prospected. The results of this study can be used as a reference for the further practical application of machine vision in the military field.

    相似文献
    引证文献
引用本文

陈静,宫黎明.机器视觉在军事领域的应用现状及发展趋势[J].遥测遥控,2022,43(6):124-135.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2021-11-15
  • 最后修改日期:2022-11-07
  • 录用日期:2022-07-01
  • 在线发布日期: 2022-11-14
  • 出版日期:
  • 优先出版日期: 2022-11-14