低轨卫星缺失时序数据的模式识别方法
作者:
作者单位:

1.西安交通大学计算机科学与技术学院;2.中国电子科技集团公司第五十四研究所;3.陆军航空兵研究所

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目“多应用负载性能干扰预测与隔离相关问题研究”(项目编号:61672421)


A pattern recognition method for LEO satellite time series data with missing data
Author:
Affiliation:

1.School of Computer Science and Technology;2.The 54th Institute of China Electronics Technology Group Corporation;3.Army Aviation Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在航天应用中,低轨卫星经常会由于原始数据缺失而影响卫星时序数据模式识别结果,降低准确率。针对该问题提出了一种新型MR-GRU模型,可有效处理缺失时序数据,并获得较好的模式识别准确率。区别于传统模型的补全缺失数据的方法,MR-GRU模型直接在缺失时序数据上运用循环神经网络进行训练,对传统门控循环单元结构进行了改进,增加了两个新变量:掩蔽项和衰减项。掩蔽项作用于输入,衰减项作用于输入和隐层单元输出。MR-GRU模型不仅能够保持时序数据固有的时间特性,还能有效提高模式识别精度。在卫星时序数据上的模式识别试验表明,MR-GRU模型准确率优于传统模型。

    Abstract:

    In aerospace applications, Low Earth Orbit (LEO) satellites often lose some parts of raw data, which will disturb pattern recognition on satellite time series data and decline accuracy. A novel MR-GRU model is proposed, which can achieve a high accuracy on satellite time series data while some data are randomly missing. The MR-GRU model directly trains a recurrent neural network on the incomplete time series data, instead of the traditional way that tries to complement the missing data. The common Gated Recurrent Unit (GRU) model is improved to MR-GRU model. Two terms are expanded, i.e. masking term and attenuation term. The masking term is applied to the input at each time, and the attenuation term is applied to the input and output of each hidden unit. Consequently, the inherent time characteristics of time series data are ensured by the MR-GRU model, while the accuracy of pattern recognition is increased. According to the experimental results on satellite time series data, it is shown that the MR-GRU model is superior to the traditional models.

    相似文献
    引证文献
引用本文

郭思尧,颜 博,翟 磊,鲍军鹏,宋 宴,张 超,陈亚军.低轨卫星缺失时序数据的模式识别方法[J].遥测遥控,2021,42(6):38-46.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:2020-12-11
  • 最后修改日期:2021-10-22
  • 录用日期:
  • 在线发布日期: 2021-11-19
  • 出版日期:
  • 优先出版日期: 2021-11-19