深度学习技术在空间激光通信中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V443+.1

基金项目:


Application of deep learning technology in free space laser communication
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    与射频通信相比,空间激光通信具有传输速率高、保密性能强、终端功耗低等优点,目前已成为当前通信领域的一个研究热点。同时,空间激光通信也面临着一些严峻的技术挑战,如大气湍流导致空间激光通信的信道情况十分复杂,复杂的信道会引发信号光强度起伏剧烈,信标光跟踪与瞄准困难,接收端的信号光场波前畸变严重等。为了提升空间激光通信在复杂信道环境中的性能,学者们将深度学习技术引入到空间激光通信系统中。多项研究表明,深度学习在空间激光通信的诸多方面表现出了优越的信息处理能力。对近年来深度学习技术在空间激光通信信号处理与检测,信标光捕获与跟踪以及波前畸变探测与校正等方面的应用做一全面梳理,并对用于空间激光通信的深度学习技术的前景进行展望。

    Abstract:

    To compare with radio communication, free space laser communication is owning to higher data rate, higher security and less power dissipation, has become one of the research hotspot. However, the performance of free space laser communication is limited to some factors, such as signal fluctuation, the difficulties of tracking and pointing mechanism, and the wavefront aberration caused by atmosphere turbulence. In order to improve the performance in complex environment, the deep learning method is introduced to free space laser communication. Various studies have shown that the deep learning method can process signal with obvious advantages in many aspects of free space laser communication. This paper makes a review of the deep learning method used for free space laser communication signal processing and detection, the tracking and pointing mechanism, and wavefront aberration detection and correction. Finally, the prospect of deep learning technology for FSOC is prospected.

    相似文献
    引证文献
引用本文

黄永梅;李宏伟;贺 东;等.深度学习技术在空间激光通信中的应用[J].遥测遥控,2022,43(4):89-96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
    参考文献
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-02
  • 出版日期:
  • 优先出版日期: 2022-08-02